

Prajyot Deshpande
prajyot.deshpande23@gmail.com | (+91) 8999068425

@prajyotdeshpande23 Prajyot Deshpande

ABOUT ME:

 I'm a 3rd year IT undergraduate, passionate about technology. I have a self-motivated & can-

do attitude. Seeking a position to enhance my skills & contribute to a professional

organization. I'm passionate to learn new stuff that can help me to get better. I also participate

in some hackathons related to Web Dev.

OBJECTIVE

To secure a position in a reputed software company where I can use my technical skills,

passion for technology, and self-motivated attitude to contribute to organizational success

while continuously learning and enhancing my skills.

TECHNICAL SKILLS

HTML & CSS EJS Node.js

Javascript Handlebars.js (HBS) C & C++

ExpressJS ReactJS Java

MongoDB SQL MongoDB

MySql Workbench GitBash, GitHub Version Control

EDUCATION

❖ IT| P.E.S. Modern College Of Engineering CGPA: 7.36 | (May 24)

❖ XII (State Board) |Shri Fattechand Jain College 68%| 2022

❖ X (State Board) | Amrita Vidyalayam 79.80% | 2020

https://github.com/shradha-khapra
https://github.com/prajyotdeshpande23
https://www.linkedin.com/in/prajyot-deshpande-667b11250/
https://www.linkedin.com/in/prajyot-deshpande-667b11250/

ACADEMIC PROJECTS

❖ Employee Management System

The Employee Management System is a web-based application developed using Node.js,
Express.js, and MongoDB to streamline employee data management and operations. It
offers comprehensive CRUD functionalities, allowing users to add, view, update, and
delete employee records efficiently. The system features a dynamic user interface,
leveraging Express.js for HTTP handling and a templating engine like Handlebars.js for
rendering. MongoDB ensures robust database integration with support for querying,
indexing, and data integrity. Middleware and routing in Express.js manage various
functionalities, including error handling and authentication. Designed with modularity in
mind, the application maintains a clear structure, separating routes, models, and
controllers for easy maintenance and scalability.

❖ Real Time Collaborative Text Editor – TelePresence

TelePresence is a real-time collaborative document editor designed to provide seamless
and dynamic editing experiences by integrating React.js for an interactive user interface,
Node.js with WebSockets for real-time backend communication, and MongoDB for
scalable and flexible data storage. The platform allows multiple users to join room-based
sessions with unique IDs, ensuring private and focused collaboration. User authentication
is secured using JSON Web Tokens (JWT), and environment variables safeguard sensitive
configurations. Features include text formatting, document saving/exporting, and error
handling, with state management tools like Redux or Context API ensuring smooth
performance. TelePresence uses combination of cutting-edge technologies to deliver a
robust, scalable, and feature-rich platform for efficient and secure collaborative editing.

❖ Chatting Application – Connectify

To develop a one-on-one real-time chat application, I utilized modern web technologies
to ensure seamless communication between users. The primary technology for real-
time functionality is Socket.IO, a JavaScript library built on WebSocket that allows for
event-driven, bidirectional communication between the server and the client. On the
backend, I employed Node.js for its non-blocking I/O and event-driven architecture,
making it ideal for real-time applications. Express.js, a lightweight web framework for
Node.js, was used to handle routes and serve the frontend files. For the frontend, I
implemented HTML, CSS, and JavaScript to design the user interface, ensuring
responsiveness and intuitive usability. The application works by first prompting users to
enter their username upon opening the interface; this username is stored temporarily
on the server using Socket.IO's connection instance.

HOBBIES

❖ Typing
❖ Gardening

